

Active managed Buildings with Energy performaNce Contracting

Deliverable 4.3 (D4.3)

Report of the Scenario results and their validation in the stakeholder co-creation workshop

The AmBIENCe Consortium

May | 2022

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 847054.

Disclaimer: The sole responsibility for the content published on this website collection lies with the authors. It does not necessarily reflect the opinion of the Executive Agency for Small and Medium-sized Enterprises (EASME) or the European Commission (EC). EASME or the EC are not responsible for any use that may be made of the information contained therein.

DOCUMENT CONTROL PAGE

PROJECT ACRONYM	AmBIENCe
DOCUMENT	D4.3 Report of the Scenario results and their validation in the stakeholder co-creation workshop
TYPE (DISTRIBUTION LEVEL)	 Public Confidential Restricted
DUE DELIVERY DATE	31/5/2022
DATE OF DELIVERY	31/5/2022
STATUS AND VERSION	V01
DELIVERABLE RESPONSIBLE	BPIE
AUTHOR (S)	Xerome Fernández Álvarez (BPIE), Jessica Glicker (BPIE), João Cravinho (EDP),
OFFICIAL REVIEWER/s	Jan Diriken (VITO), Sarnavi Mahesh (VITO), Judit Kockat (BPIE)

EXECUTIVE SUMMARY

The purpose of the AmBIENCe project is to reduce the CO₂ emissions of buildings by introducing the flexible use of Renewable Energy Sources in combination with electrification and Demand Response (DR). By uniting the best of two worlds and combining Energy Performance Contracting (EPC) with DR, the Active building Energy Performance Contracting (AEPC) is developed as a new concept that allows specific new services, new business models and new actors. In recent years, buildings became more digital and smarter. The active EPC extends the classic EPC concept to include DR value streams, valorising the flexibility that is available in active buildings.

This report summarises the discussion had during a stakeholder workshop hosted on April 28th, 2022, to validate the methodology, scenarios, and assumptions to achieve nearly zero emission buildings by 2050 to specialists in the building and energy sector.

The main purpose of this report is to:

- Validate the results from the scenarios defined in the "Scenario development and Energy System Impact calculation active control adoption" (Task 4.2)
- Document the content and the main outcomes of the stakeholder workshop conducted on 28th April 2022, "Energy system impact scenarios and methodology discussion" (see annex I).

In conclusion, there was no major feedback from the stakeholder group and the methodology and scenarios were validated by the experts consulted.

TABLE OF CONTENTS

1.	INTRODUCTION AND BACKGROUND	7
1.1	. CONTEXT	7
1.2	. PURPOSE AND SCOPE OF THE REPORT	7
2.	SUMMARY OF SIMULATION SCENARIOS	8
3.	MAIN RESULTS FROM THE SIMULATION OF THE SCENARIOS	9
3.1	. AMBIENCE SCENARIO 1 (AS1)	10
3.2	. AMBIENCE SCENARIO 2 (AS2)	14
3.3	. AMBIENCE SCENARIO 3 (AS3)	17
3.4	. AMBIENCE SCENARIO 4 (AS4)	21
3.5	. AMBIENCE SCENARIO 5 (AS5)	25
3.6	. ENERGY SYSTEM'S IMPACT ANALYSIS	27
4. НҮРС	WORKSHOP CONDUCTED ON VALIDATION OF THE SCENARIOS, METHODOLOGIES AN THESIS APPLIED	ND _28
4.1	. CONTENT OF THE AGENDA	28
4.2	. STAKEHOLDERS PRESENT	28
5.	CONCLUSIONS	_29
6.	REFERENCES	_30
7.	ABBREVIATIONS	_31
8.	ANNEX I	_32
9.	ANNEX II	_61

LIST OF FIGURES

Figure 1: AmBIENCe scenario 1 (AS1) total CO ₂ intensity of each EU-27 country – current status vs 2050 results.	10
Figure 2: AmBIENCe scenario 1 (AS1) EU aggregated CO ₂ intensity of each building typology, per year.	.1
Figure 3: AmBIENCe scenario 1 (AS1) evolution of CO ₂ intensity per capita, for each EU-27 country	.2
Figure 4: AmBIENCe scenario 1 (AS1) share of renovated buildings and corresponding necessary investments, each EU-27 country	for .3
Figure 5: AmBIENCe scenario 2 (AS2) total CO ₂ intensity of each EU-27 country – current status vs 2050 results.	14
Figure 6: AmBIENCe scenario 2 (AS2) EU aggregated CO ₂ intensity of each building typology, per year.	.5
Figure 7: AmBIENCe scenario 2 (AS2) evolution of CO ₂ intensity per capita, for each EU-27 country	.6
Figure 8: AmBIENCe scenario 2 (AS2) share of renovated buildings and corresponding necessary investments, each EU-27 country	for .6
Figure 9: AmBIENCe scenario 3 (AS3) total CO ₂ intensity of each EU-27 country – current status vs 2050 results.	17
Figure 10: AmBIENCe scenario 3 (AS3) EU aggregated CO ₂ intensity of each building typology, per year.	.8
Figure 11: AmBIENCe scenario 3 (AS3) evolution of CO ₂ intensity per capita, for each EU-27 country	.9
Figure 12: AmBIENCe scenario 3 (AS3) share of renovated buildings and corresponding necessary investments, each EU-27 country	for 20
Figure 13: AmBIENCe scenario 4 (AS4) total CO ₂ intensity of each EU-27 country – current status vs 2050 resu 2	lts. 21
Figure 14: AmBIENCe scenario 4 (AS4) EU aggregated CO ₂ intensity of each building typology, per year.	22
Figure 15: AmBIENCe scenario 4 (AS4) evolution of CO ₂ intensity per capita, for each EU-27 country	23
Figure 16:AMBIENCE SCENARIO 4 (AS4) Share of renovated buildings and corresponding necessary investment for each EU-27 country	nts, 24
Figure 17: AmBIENCe scenario 5 (AS5) total CO ₂ intensity of each EU-27 country – current status vs 2050 resu 2	lts. 25
Figure 18: AmBIENCe scenario 5 (AS5) EU aggregated CO ₂ intensity of each building typology, per year.	26
Figure 19: AmBIENCe scenario 5 (AS5) evolution of CO ₂ intensity per capita, for each EU-27 country 2	26
Figure 20: AmBIENCe scenario 5 (AS5) share of renovated buildings and corresponding necessary investments, each EU-27 country	for 27
Figure 21: Historical baseline, current status and 2030'S target for CI at the EU-27 level (average) and for each N Historical CI and current CI from [3].	ΛS. 51

LIST OF TABLES

Table 1. Considerations made to define the simulated AmBIENCe scenarios.

8

1. INTRODUCTION AND BACKGROUND

The purpose of the AmBIENCe project is to reduce the CO₂ emissions of buildings by utilising the flexible use of Renewable Energy Sources (RES) in combination with electrification and Demand Response (DR). By uniting these and combining Energy Performance Contracting (EPC) with DR, the Active building Energy Performance Contracting (AEPC) was developed as a new concept that allows specific new services, new business models and new actors. In recent years, buildings became more digital and smarter. The active EPC extends the classic EPC concept to include DR value streams, valorising the flexibility that is available in active buildings. The AEPC concept and tool were validated in two pilot buildings.

1.1. CONTEXT

In addition to the creation of a business model and the pilot projects, part of the Ambience project included the creation of an Energy System Impact Analysis methodology and tool, used to calculate Energy System Impact Key Performance Indicators (KPIs) in a transparent manner. Relevant scenarios were developed and tested related to evolutions in the energy system, tariff structures and regulation, the adoption rate of building level Demand Response services etc. Combining this information, an Energy System KPI calculation tool was developed, and for a few reference scenarios, KPIs were calculated.

Related material for the creation of the Energy System Impact Analysis was the creation of building stock information database [1], based on the Building Stock Observatory and the data from different EU projects such as TABULA and Hotmaps. Additionally, the Energy System Impact Analysis methodology and tool was developed to assess the impact on the upstream energy system of active control in buildings.

1.2. PURPOSE AND SCOPE OF THE REPORT

This report summarises the discussion had during a stakeholder workshop hosted on April 28th, 2022, to validate the methodology, scenarios, and assumptions to achieve nearly zero emission buildings by 2050 by specialists in the building and energy sector.

The main purpose of this report is to:

- Show and analyse the results from the scenarios defined in the "Scenario development and Energy System Impact calculation active control adoption"
- Document the content and the main outcomes of the stakeholder workshop conducted on 28th April 2022, "Energy system impact scenarios and methodology discussion" (see annex I).

2. SUMMARY OF SIMULATION SCENARIOS

The following table shows a summary of the considerations made for defining the scenarios, which are thoroughly explained in the *Report on the methodology of creating the scenarios, integrating the models and adopt* assumptions (AmBIENCe D4.2) [2]:

AmBIENCe Scenario (AS)	Renovation rates	Carbon intensity	Electrification uptake	Flexibility uptake
SCENARIO 1 (AS1)	 Start year renovation rate (2020) of 1%, of which: 80% shallow renovations, 15% medium renovations, 5% deep renovations. End year renovation rate (2050) of 1.5%, of which: 20% are shallow renovations 60% medium renovations 20% deep/full renovations 	As a function of greenhouse gas (GHG) targets (see Annex II)	80%	Start year (2020): 0.02 End year (2050): 0.2
SCENARIO 2 (AS2)	 Start year renovation rate (2020) of 1% (like AS1): End year renovation rate (2050) of 2.0%, of which: 10% shallow renovations 70% medium renovations 20% deep renovations 	As a function of GHG targets (see Annex II)	80%	Those of AS1
SCENARIO 3 (AS3)	 Start year renovation rate (2020) of 1%, (like AS1): End year renovation rate (2050) of 3.0%, of which: 70% medium renovations 30% deep/full renovations 	As a function of GHG targets (see Annex II)	80%	Those of AS1
SCENARIO 4 (AS4)	Those of AS3	As a function of GHG targets (see Annex II)	40%	Those of AS1
SCENARIO 5 (AS5)	Those of AS3	As a function of GHG targets (see Annex II)	80%	Start year (2020): 0.05 End year (2050): 0.30

TABLE 1. CONSIDERATIONS MADE TO DEFINE THE SIMULATED AMBIENCE SCENARIOS [2].

3. MAIN RESULTS FROM THE SIMULATION OF THE SCENARIOS

The simulations made with the KPI calculation tool developed in the *Report on the methodology of creating the scenarios, integrating the models and adopt assumptions* [2] which provided results for all the 27 EU MS in the form of graphs, covering the 2020-2050 period for the following parameters:

- Total CO₂ intensity¹ per capita (in 2020 vs in 2050) (in tons);
- Aggregated CO₂ intensity of each building typology, per year;
- Evolution of the CO₂ intensity per capita (in tons);
- Share of renovated buildings;
- Accumulated renovation investment costs (in millions of EUR).

In the following sections, 3.1 through 3.5, the main outputs are presented for each scenario in the form of graphs. In section 3.6 a summary of the main findings can be read – for a more detailed analysis of the energy system's impact of the adoption of active control see [2].

¹ Carbon intensity (CI) defined as the amount of CO₂ emitted to power the energy systems of buildings.

3.1. AMBIENCE SCENARIO 1 (AS1)

FIGURE 1: AMBIENCE SCENARIO 1 (AS1) TOTAL CO₂ INTENSITY OF EACH EU-27 COUNTRY – CURRENT STATUS VS 2050 RESULTS.

 $_{\rm 1e8} {\rm Evolution}$ of the ${\rm CO}_{\rm 2}$ intensity per building type aggregated per year in the EU between 2020 and 2050

FIGURE 2: AMBIENCE SCENARIO 1 (AS1) EU AGGREGATED CO2 INTENSITY OF EACH BUILDING TYPOLOGY, PER YEAR.

SFH - SINGLE FAMILY HOUSE; MFH - MULTI FAMILY HOUSE; ABL - APARTMENT BLOCK; HEA - HEALTH; HOR - HOTELS AND RESTAURANTS; OFF - OFFICES; TRA – TRADE; EDU – EDUCATION

FIGURE 3: AMBIENCE SCENARIO 1 (AS1) EVOLUTION OF CO2 INTENSITY PER CAPITA, FOR EACH EU-27 COUNTRY

FIGURE 4: AMBIENCE SCENARIO 1 (AS1) SHARE OF RENOVATED BUILDINGS AND CORRESPONDING NECESSARY INVESTMENTS, FOR EACH EU-27 COUNTRY

3.2. AMBIENCE SCENARIO 2 (AS2)

FIGURE 5: AMBIENCE SCENARIO 2 (AS2) TOTAL CO₂ INTENSITY OF EACH EU-27 COUNTRY – CURRENT STATUS VS 2050 RESULTS.

FIGURE 6: AMBIENCE SCENARIO 2 (AS2) EU AGGREGATED CO2 INTENSITY OF EACH BUILDING TYPOLOGY, PER YEAR.

Year

SFH - SINGLE FAMILY HOUSE; MFH - MULTI FAMILY HOUSE; ABL - APARTMENT BLOCK; HEA - HEALTH; HOR - HOTELS AND RESTAURANTS; OFF - OFFICES; TRA – TRADE; EDU – EDUCATION

D4.3

af ambience

FIGURE 7: AMBIENCE SCENARIO 2 (AS2) EVOLUTION OF CO2 INTENSITY PER CAPITA, FOR EACH EU-27 COUNTRY

FIGURE 8: AMBIENCE SCENARIO 2 (AS2) SHARE OF RENOVATED BUILDINGS AND CORRESPONDING NECESSARY INVESTMENTS, FOR EACH EU-27 COUNTRY

3.3. AMBIENCE SCENARIO 3 (AS3)

FIGURE 9: AMBIENCE SCENARIO 3 (AS3) TOTAL CO2 INTENSITY OF EACH EU-27 COUNTRY – CURRENT STATUS VS 2050 RESULTS.

 $_{\rm 1e8} {\rm Evolution}$ of the CO $_{\rm 2}$ intensity per building type aggregated per year in the EU between 2020 and 2050

FIGURE 10: AMBIENCE SCENARIO 3 (AS3) EU AGGREGATED CO2 INTENSITY OF EACH BUILDING TYPOLOGY, PER YEAR.

SFH - SINGLE FAMILY HOUSE; MFH - MULTI FAMILY HOUSE; ABL - APARTMENT BLOCK; HEA - HEALTH; HOR - HOTELS AND RESTAURANTS; OFF - OFFICES; TRA – TRADE; EDU – EDUCATION

FIGURE 11: AMBIENCE SCENARIO 3 (AS3) EVOLUTION OF CO2 INTENSITY PER CAPITA, FOR EACH EU-27 COUNTRY

af ambience

FIGURE 12: AMBIENCE SCENARIO 3 (AS3) SHARE OF RENOVATED BUILDINGS AND CORRESPONDING NECESSARY INVESTMENTS, FOR EACH EU-27 COUNTRY

3.4. AMBIENCE SCENARIO 4 (AS4)

FIGURE 13: AMBIENCE SCENARIO 4 (AS4) TOTAL CO2 INTENSITY OF EACH EU-27 COUNTRY – CURRENT STATUS VS 2050 RESULTS.

FIGURE 14: AMBIENCE SCENARIO 4 (AS4) EU AGGREGATED CO2 INTENSITY OF EACH BUILDING TYPOLOGY, PER YEAR.

SFH – SINGLE FAMILY HOUSE; MFH – MULTI FAMILY HOUSE; ABL – APARTMENT BLOCK; HEA – HEALTH; HOR – HOTELS AND RESTAURANTS; OFF – OFFICES; TRA – TRADE; EDU – EDUCATION

Evolution of the CO_2 intensity per capita [ton] per year for all EU-27 countries between 2020 and 2050

FIGURE 15: AMBIENCE SCENARIO 4 (AS4) EVOLUTION OF CO2 INTENSITY PER CAPITA, FOR EACH EU-27 COUNTRY

af ambience

FIGURE 16:AMBIENCE SCENARIO 4 (AS4) SHARE OF RENOVATED BUILDINGS AND CORRESPONDING NECESSARY INVESTMENTS, FOR EACH EU-27 COUNTRY

3.5. AMBIENCE SCENARIO 5 (AS5)

FIGURE 17: AMBIENCE SCENARIO 5 (AS5) TOTAL CO2 INTENSITY OF EACH EU-27 COUNTRY – CURRENT STATUS VS 2050 RESULTS.

FIGURE 18: AMBIENCE SCENARIO 5 (AS5) EU AGGREGATED CO2 INTENSITY OF EACH BUILDING TYPOLOGY, PER YEAR.

SFH – SINGLE FAMILY HOUSE; MFH – MULTI FAMILY HOUSE; ABL – APARTMENT BLOCK; HEA – HEALTH; HOR – HOTELS AND RESTAURANTS; OFF – OFFICES; TRA – TRADE; EDU – EDUCATION

FIGURE 19: AMBIENCE SCENARIO 5 (AS5) EVOLUTION OF CO2 INTENSITY PER CAPITA, FOR EACH EU-27 COUNTRY

at ambience

FIGURE 20: AMBIENCE SCENARIO 5 (AS5) SHARE OF RENOVATED BUILDINGS AND CORRESPONDING NECESSARY INVESTMENTS, FOR EACH EU-27 COUNTRY

3.6. ENERGY SYSTEM'S IMPACT ANALYSIS

Strongly based on guidelines, the analysis focused on the energy system decarbonization enablers – renovation, electrification and the active control adoption. The analysis concluded that as the renovation rates increase, logically, the bigger the share of renovated buildings.

The comparison between the sub-optimal AS1 annual renovation rates of 1.5% and the ideal annual renovation rates of 3%, by 2050, could amount to an accumulated avoided 823 kiloton of CO_2 emissions. The associated renovation costs – necessary for promoting the electrification of the building stock – can amount to an accumulated value of 2.74 trillion euros – around 19% of the current (i.e., 2021) EU's GDP [3].

An uptake of electrification at a large scale (represented by the difference between AS4 and AS3 levels) can represent a cumulative avoided CO_2 emissions by 2050 of 559 kilotons of CO_2 – representing 68% of the emissions avoided solely from the renovation of the building stock. The uptake of flexibility services, such as demand response, and active control adoption can further contribute to the successful decarbonization of the energy system – in the same order of magnitude of the impacts of renovating the building stock, highlighting the key-role which flexibility and the adoption of active control within the building stock will play in the energy transition.

Finally, and reflected by AS5, achieving the climatic targets for 2050 can contribute to the reduction of the European carbon intensity of around 26%, paving the way to the energy system's decarbonization.

4. WORKSHOP CONDUCTED ON VALIDATION OF THE SCENARIOS, METHODOLOGIES AND HYPOTHESIS APPLIED

4.1. CONTENT OF THE AGENDA

The stakeholder workshop was held on April 28, 2022. The agenda included:

15:30-15:40	Welcome and introduction to the Ambience project Jesse Glicker, Project Manager, BPIE
15:40-15:50	Methodology and key assumptions João Cravinho, EDP
15:50-16:00	Key performance indicators and calculation tool Jan Diriken, Researcher, VITO
16:00-16:10	Optimization on costs and carbon intensity Sarnavi Mahesh, Senior Researcher, VITO
16:10-16:40	Discussion of results Jesse Glicker, Project Manager, BPIE and Xerome Fernández Álvarez, Researcher, BPIE
16:40-16:50	Wrap up and conclusions Jesse Glicker, Project Manager, BPIE

4.2. STAKEHOLDERS PRESENT

Stakeholder organisations present at the workshop were:

1. VITO	8. Energinvest
2. CENSE FCT-NOVA	9. Ville de la Louvière
3. INESC TEC	10. BAM Energy Systems
4. EDP New	11. VINCI Facilities
5. ENEA	12. Sia Partners
6. Malvar Controls, Lda.	13. Agency for Energy Efficiency and Environment – Romania
7. Ep group	14. BPIE

5. CONCLUSIONS

There were no particular comments from the stakeholders during the call objecting the scenarios' assumptions, as they were deemed reasonable and based on sound data. Additionally, the audience didn't raise any objection when primary questions were asked regarding points of clarification on the analysis conducted, as these were considered well explained during the presentations given.

It was therefore concluded that the scenarios and the methodology applied were validated and thus suitable for the purposes of the project.

af ambience

6. REFERENCES

- A. database, https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fambience-project.eu%2Fwp-content%2Fuploads%2F2022%2F03%2FAmBIENCe_Deliverable 4.1 Database-of-greybox-model-parameter-values.xlsx&wdOrigin=BROWSELINK, 2021.
- [2] J. Cravinho, I. Jankovic, J. Diriken, X. Fernandez and S. Mahesh, "D4.2- Report on the methodology of creating the scenarios, integrating the models and active control adopt assumption (AmBIENCe project deliverable)," 2022.
- [3] The World Bank, "GDP (current US\$) European Union," 2022. [Online]. Available: https://databank.worldbank.org/reports.aspx?source=2&series=NY.GDP.MKTP.CD&country=E UU. [Accessed May 2022].
- [4] Eurostat, "Simplified energy balances," 14 04 2022. [Online]. Available: https://ec.europa.eu/eurostat/databrowser/view/NRG_BAL_S_custom_2608841/default/tabl e?lang=en.

7. ABBREVIATIONS

ABL	Apartment Block
AEPC	Active building Energy Performance Contract
AS	AmBIENCe scenario
DR	Demand Response
EDU	Education
EPC	Energy Performance Contract
GHG	Greenhouse gas
HEA	Health
HOR	Hotels and Restaurants
KPI	Key Performance Indicators
MFH	Multi Family House
OFF	Offices
SFH	Single Family House
TRA	Trade

af ambience

8. ANNEX I

Below are the slides presented during the workshop:

at ambience

AmBIENCe Project

Workshop: Energy system impact scenarios and methodology discussion April 28. 2022

Jesse Glicker Project Manager BPIE

On the call today

at ambience

Agenda

at ambience

In this workshop the methodology, scenarios, and assumptions to achieve nearly zero emission buildings by 2050 will be proposed to specialists in the building and energy sector. After an in-depth discussion, the methodology, scenarios, and assumptions will be validated with specialists in the building and energy sector.

15:30-16:50	
15:30-15:40	Welcome and introduction to the Ambience project
	Jesse Glicker, Project Manager, BPIE
15:40-15:50	Methodology and key assumptions
	Joao <u>Cravinho</u> , EDP
15:50-16:00	Key performance indicators and calculation tool
	Jan Diriken, Researcher, VITO
16:00-16:10	Optimization on energy costs and carbon emissions
	Sarnavi Mahesh, Senior Researcher, VITO
16:10-16:40	Discussion of results
	Jesse Glicker, Project Manager, BPIE and Xerome Fernandez Alvarez, Researcher, BPIE
16:40-16:50	Wrap up and conclusions
	Jesse Glicker, Project Manager, BPIF

a ambience

af ambience

New Concept

a ambience

The AmBIENCe concept extends the traditional EPC concept in 3 dimensions:

ESCO offices, commerce, etc Active Building EPC

Vision and Mission

VISION: Reduced building emissions in the EU, as well as lower energy consumption, thanks to the application of electrification combined with active control.

- Electrification (of heating and hot water production) reduces emissions because compared to gas, electricity produces heat more efficiently and has a lower carbon intensity.
- The carbon intensity of electricity will continue to drop by more investments in wind and PV.
- The carbon intensity varies over the day, and the intra-day variability increases: emissions can be reduced by being smart and conscious about WHEN energy is consumed.

MISSION: Improve the economic attractiveness of building emission reduction measures by combining energy efficiency improvements with electrification and active control.

18/05/2022

Č

7

New Opportunity: Buildings will become more digital and smarter

af ambience

18/05/2022

Active managed Buildings with Energy Performance Contracting

af ambience

GOALS and objectives : WHAT will we do?

Extend the Energy Performance Contracting concept to include Demand Response value streams, valorizing the flexibility that is available in Active Buildings*.

Make this Active Building EPC concept applicable to a broader range of buildings (incl. residential) and clusters of buildings.

Develop a tool that supports the forecast of the DR value stream in the EPC contracting phase, along with a matching M&V methodology for the operational phase.

Validate the concept, tool and M&V methodology through two pilots (real buildings, real ESCOs).

Engage with all relevant actors and stakeholder groups (from building managers to ESCOs, policy makers and financial institutions) to remove barriers and ensure applicability.

18/05/2022

*Active Buildings: equipped with sensors, meters, ICT that enables them to optimally control the consumption of flexible assets and storage. 9

AmBIENCe - Implementation

a*t* ambience

10

AmBIENCe project's objectives will be achieved by implementing the work organised in 7 different work packages:

af ambience

Methodology and impact of the demand response technologies

João Cravinho, EDPNew

- in /company/ambience-project
- 🎷 /ambienceh2020
- /channel/UC-MbfbNviyNihM8eLFIwzQg

Methodology: AmBIENCe analysis

af ambience

13

Assessing of the EU-27 building stock's impact in the energy system:

Sources: 4- "Commission Recommendation (EU) 2019/1019 of 7 June 2019 on building modernization," 2019. [Online]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32019H1019;

18/05/2022

Light/Shallow

Renovations which

decrease primary

energy demand of a

building between 3%

and 30%

Roof

Walls

Windows

2020

1%

1032022 and 1032022 and 1032022 and 1032022 and 1032020 and 10320 and 10320

"Today, roughly 75% of the EU building stock is energy inefficient"

the building stock

Renovations which

decrease primary

energy demand of a

building between 30%

and 60%

2030

AmBIENCe within AmBIENCe: renovating

Full renovation

15

Deep

Renovations which

decrease primary

energy demand of

a building >60%.

EU-27 Member States (MS). 18/05/2022

March 20221.

AmBIENCe scenario: decarbonization targets

Climate policies

- Intermediate target of 55% CO₂ emissions reduction compared to historical baseline (1990), by 2030
- Achieve climate neutrality by 2050 (LTS Long Term Strategy)

Energy efficiency

- Intermidiate target of achieving 32.5% increase in energy efficiency in EU's final and primary energy consumption
- Renovation and electrification of building stock

RES (Renewable Energy Sources)

a ambience

- 32% share of renewable energy in the final energy consumption by 2030
- Achieve high overall share of RES in power generation

Demand

Demand response (DR) services will ensure active control within the building stock while providing more flexibility to the energy system and end-consumers - gradually available throughout each of the

Medium

Roof and walls

Roof and windows

Walls and windows

2050

3%

14 14 Sources: 1- European Council, "Long-term low greenhouse gas emission development strategy of the European Union," 6 March 2020. [Online]. Available: https://unfccc.int/sites/default/files/resource/HR-03-06-2020%20EU%20Submission%20on%20Long%20term%20Strategy, pdf; 2- European Commission, Directorate-General for Energy, "Energy: Roadmap 2050 Inpact Assessment and scenario analysis," [Online]. Available: Atailable at https://ce.uropa.eu/energy/sites/ener/files/documents/roadmap2050 inpact Assessment and scenario analysis," [Online]. Available: Atailable at https://ce.uropa.eu/energy/sites/ener/files/documents/roadmap2050 inpact Assessment and scenario analysis," [Online]. Available: Atailable: Ataila

2030

2020

af ambience

2050

D4.3

af ambience

at ambience

AmBIENCe within AmBIENCe: scenarios for the building stock renovation

AmBIENCe within AmBIENCe: Electrification impact and cost assessment

af ambience

• What is the impact of electrification of the EU-27 building stock?

Electrification uptake		
80%	40%	
AS1-3	AS4	

· What are the associated costs of renovating the building stock?

Building Element	Renovation	Price
Walls	Air chambers filling	12-18 EUR/m2 (40mm)
Roofs	Internal insulation of roofs	17-42 EUR/m2
Glazing replacement with Windows 8-20-6mm glazing low emissive (1,4 W/m2/K)		160 EUR/m2

18/05/2022

Source: 7- https://constructioncosts.eu/cost-index/

17

AmBIENCe within AmBIENCe: Carbon intensity (CI)

at ambience

"The EU electricity sector is expected to provide one of the most significant contributions to climate mitigation targets by 2030 and be a cornerstone for the Union to reach net climate neutrality by 2050"

- CI as a quantifiable measure to the building stock's impact on the energy system
- CI targets, by 2050, as a function of the EU-27 decarbonization targets

Source: 9- European Environmental Agency, "Greenhouse gas emission intensity of electricity generation in Europe," 18 November 2021. [Online]. Available: https://www.eea.europa.eu/ims/greenhouse-gas-emission-intensity-of-1.

Carbon intensity (CI): Quantifying the building stock's impact

at ambience

2030

Account for decarbonization targets:

- Reduction of GHG emissions by 55% (2030 target)
- Increase of RES share in energy mix

	-	-	
1	105	120	\mathbf{r}
10/	05	20	~~

Source: 9- European Environmental Agency, "Greenhouse gas emission intensity of electricity generation in Europe," 18 November 2021. [Online]. Available: https://www.eea.europa.eu/ims/greenhouse-gas-emission-intensity-of-1. 10- Eurostat, "Energy statistics -- an overview". Available: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_statistics_-_an_overview.

AmBIENCe inception: scenarios within scenarios

at ambience

20

	scenarios		
AmBIENCe Scenario (AS)	Description		
SCENARIO 1 (AS1)	Renovation Rates: - Start year renovation rate (2020) of 1%, of which: - 80% shallow renovations - 15% medium renovations - 5% deep renovations - End year renovation rate (2050) of 1.5%, of which: - 20% are shallow renovations - 60% medium renovations - 20% deep/full renovations	Carbon Intensity as a funciton of GHG targets	Electrification uptake: 80%
SCENARIO 2 (AS2)	Renovation Rates: - Start year renovation rate (2020) of 1% (AS1): - End year renovation rate (2050) of 2.0%, of which: - 10% shallow renovations - 70% medium renovations - 20% deep renovations	Carbon Intensity as a funciton of GHG targets	Electrification uptake: 80%
SCENARIO 3 (AS3)	Renovation Rates: - Start year renovation rate (2020) of 1%, (AS1): - End year renovation rate (2050) of 3.0%, of which: - 70% medium renovations - 30% deep/full renovations	Carbon Intensity as a funciton of GHG targets	Electrification uptake: 80%
SCENARIO 4 (AS4)	Renovation Rates: AS3	Carbon Intensity as a funciton of GHG targets	Electrification uptake: 40%

af ambience

at ambience

Key performance indicators and calculation tool "Estimating thermal flexibility of buildings in a dynamic way"

Jan Diriken Energy Technology Researcher – thermal systems VITO / EnergyVille

Contents	at ambience
Methodology	
Inputs	
Results	

Methodology: What to include?

at ambience

- Entire EU-27 building stock
- Different energy systems
- Effects of possible renovation measures and rates
- Effects of electrification of the energy system including uptake of Demand Response
- Evolution of the electricity carbon intensity of the coming years

Combined methodology as a Python simulation tool which can be used easily to estimate the effect of different input parameters on the CO₂ emissions (KPI)

at ambience

Methodology: flow

18/05/2022

User input (as cfg-file)

[GENERAL]

input = data/full_db_2.xlsx output = scenario_analysis.xlsx s_year = 2018 e_year = 2030

[CO2INT]

biomass = 230 natgas = 227 liquid = 314 solid = 414 electricity = data/co2_el_2018.csv el_co2_decl_rate = 0.07 el_co2_decl_mode = 0 el_co2_min = 50 18/05/2022

[RENOVATION]

renovation_rate.roof.s = 0.05 renovation rate.roof.e = 0.15 renovation_rate.none.s = 0 renovation_rate.none.e = 0 renovation rate.walls.s = 0.01 renovation rate.walls.e = 0.05 renovation rate.windows.s = 0.01 renovation rate.windows.e = 0.015 renovation_rate.roofwalls.s = 0.001 renovation rate.roofwalls.e = 0.01 renovation_rate.roofwindows.s = 0.001 renovation_rate.roofwindows.e = 0.01 renovation rate.wallwindows.s = 0.001 renovation rate.wallwindows.e = 0.005 renovation rate.full.s = 0.0001 renovation rate.full.e = 0.001 renovation mode = 0 renovation el switch rate = 0.8 cost index file = data/cost_index.csv
cost file = data/cost_renovation.csv cost inflation = 0.025

af ambience

[FLEXIBILITY] flex_uptake.s = 0.02 flex_uptake.e = 0.20 flex_result = 0.8

46 | 62

Input: Building Stock Database

Not sure if needed? I can also mention it on the previous slide that this is based on the info contained in the BPIE database

Input: electricity Carbon Intensity

The user can specify the Carbon Intensity [gCO2 per kWh] in the initial year of the simulation

A CO2 declination rate can be specified for each country

In the config file also a minimum CI can be specified (note: if the initial CI is below the minimum, it will remain constant)

Two declination modes can be chosen:

Mode 0: constant decline: $CI_{n+1} = CI_n - decl * CI_{initial}$ Mode 1: dynamic decline $CI_{n+1} = CI_n(1 - decl)$

Country	gCO2_KWH	decl
AT	102	9,5
BE	207	6,4
BG	425	3,3
СҮ	664	7,6
CZ	445	8,5
DE	406	3,2
DK	189	6,6
EE	900	0,2
EL	662	2,4
ES	276	0,1
FI	111	8,5

User input: renovation rates and costs

af ambience

For buildings not requiring renovation, electrification is still considered!

CO2 emissions due to DR are inputs calculated by ABePEM

A cost index can be specified for each country

A fixed inflation rate can be specified

18/05/2022

at ambienc

2025

en 2018 and 20

Example of results (II)

18/05/2022

Output data

	Hon	ne insert	Draw	Page Layout	Formulas	Data	Review	View	Help	Team									🖰 Shar	e P Col	mments	
	_												-				1	0		1700		
		Calibri	- 11	- A" A" =	三里里	彩~ 2	Wrap Text		General		- 1	1 1			油区 日		28	2	47	5		
ste 4	3-	BIU	· H · 6	- A - =	==		Merce & C	arter -	- 96	9 12 2	Conde	tional Form	sat as Cell	Insert	Delete Fo	imat 💭	Sort &	Find &	Ideas 5	withit		
- 0	÷	10.00			100023				~ ~		Format	ting ~ Tab	le = Styles			- *	Fiter - S	elect *				
phoard	1.15		Font	6		Alignmen	t.	5	Num	ber	1 4	Style			Cells		Editing		Ideas S	ensitivity	~	
		• 10 ×	1.6																			
			PA																		<u> </u>	
																					20	
A	-	B	c D	E	F.	G	н	1.1	3	ĸ	L	M	N	0	P	Q	R	5	T	U	V =	
	_	CODE CO	DUNTRY BUILD	NING NBUILDS	co2_2018	n_rate_20	co2_2019	n_rate_20	co2_2020	n_rate_20	co2_2021	n_rate_20	co2_2022	n_rate_20	co2_2023	n_rate_20	co2_2024	n_rate_20	co2_2025	n_rate_20	co2_20	
0	-	AT-OFF-1LA	T OFF	7348,433	114470,1	0,00175	113056,2	0,004248	111567,3	0,007491	110005,9	0,011476	108374,7	0,016199	106676,3	0,021654	104913,7	0,027837	103089,8	0,03474	10206	
1		AT-OFF-1SA	T OFF	9851,954	88896	0,00175	87803,3	0,004248	86654,13	0,007491	85450,07	0,011476	84192,79	0,016199	82884,09	0,021654	81525,89	0,027837	80120,23	0,03474	79340,	
2		AT-OFF-1SA	T OFF	4664,397	38403,21	0,010417	37660,51	0,021194	36910,52	0,032325	36153,77	0,043804	35390,84	0,055625	34622,28	0,067781	33848,7	0,080266	33070,67	0,093074	32575,	
3	_	AT-OFF-1SA	T OFF	2727,357	18447,66	0,010417	18113,99	0,021194	17775,44	0,032325	17432,15	0,043804	17084,25	0,055625	16731,9	0,067781	16375,27	0,080266	16014,5	0,093074	15794	
4	-	AT-OFF-11A	T OFF	300	1834,386	0	1812,548	0	1792,554	0	1772,379	0	1752,322	0	1732,383	0	1712,562	0	1692,86	0	1687,	
5		AT-OFF-2(A	T OFF	176,2821	290,6332	0	287,2208	0	284,0055	0	280,809	0	277,6312	0	274,4722	0	271,3319	0	268,2103	0	267,28	
6	_	AT-OFF-2CA	T OFF	86,92113	104,7412	0	103,5114	0	102,3526	0	101,2007	0	100,0554	0	98,91692	0	97,78519	0	96,6602	0	96,32	
7	-	AT-TRA-1EA	T TRA	420,1572	10688,79	0,058333	9957,154	0,123056	9186,943	0,193514	8392,841	0.269054	7589,552	0,349044	6791,406	0,432889	6012,002	0,520056	5263,904	0,610077	4583,1	
- 8		AT-TRA-15 A	T TRA	3741,067	38157,77	0,00175	37691,55	0,004248	37201,99	0,007491	36689,59	0,011476	36154,89	0,016199	35598,51	0,021654	35021,09	0,027837	34423,34	0,03474	34095,	
9	_	AT-TRA-1SA	T TRA	1596,978	15997,37	0,058333	15096,99	0,123056	14150,35	0,193514	13163,46	0,269054	12152,53	0,349044	11133,67	0,432889	10122,42	0,520056	9133,303	0,610077	8286,2	
10		AT-TRA-11A	T TRA	1502,25	11619,1	0	11482,68	0	11354,14	0	11226,34	0	11099,3	0	10973,01	0	10847,46	0	10722,66	0	10685,	
11		AT-TRA-15A	T TRA	1892,298	9702,712	0	9588,791	0	9481,451	0	9374,736	0	9268,647	0	9163,183	0	9058,344	0	8954,131	0	8923,1	
12		AT-TRA-2(A	T TRA	1483,653	9832,082	0	9716,642	0	9607,87	0	9499,733	0	9392,229	0	9285,358	0	9179,122	0	9073,519	0	9042,1	
13		AT-TRA-2(A	T TRA	202,4724	1175,517	0	1161,715	0	1148,71	0	1135,781	0	1122,928	0	1110,151	0	1097,449	0	1084,824	0	1081,0	
14	-	AT-TRA-18 A	T TRA	420,1572	10688,79	0,058333	9977,084	0,123056	9226,857	0,193514	8452,204	0,269054	7667,282	0,349044	6885,913	0,432889	6121,241	0,520056	5385,428	0,610077	4721,0	
15	-	AT-TRA-15 A	T TRA	3741,067	38157,77	0,00175	37690,58	0,004248	37199,72	0,007491	36685,78	0,011476	36149,35	0,016199	35591,1	0,021654	35011,74	0,027837	34412,03	0,03474	34082,	
16	-	AT-TRA-11A	T TRA	1596,978	15997,37	0,058333	15101,4	0,123056	14159,17	0,193514	13176,54	0,269054	12169,63	0,349044	11154,44	0,432889	101,46,4	0,520056	9159,96	0,610077	\$316,4	
17	-	AT-TRA-15A	T TRA	1502,25	11619,1	0	11482,68	0	11354,14	0	11226,34	0	11099,3	0	10973,01	0	10847,46	0	10722,66	0	10685,	
18		AT-TRA-15 A	T TRA	1892,298	9702,712	0	9588,791	0	9481,451	0	9374,736	0	9268,647	0	9163,183	0	9058,344	0	8954,131	0	8923,1	
19	-	AT-TRA-2(A	T TRA	1483,653	9832,082	0	9716,642	0	9607,87	0	9499,733	0	9392,229	0	9285,358	0	9179,122	0	9073,519	0	9042,1	
20	-	AT-TRA-2(A	T TRA	202,4724	1175,517	0	1161,715	0	1148,71	0	1135,781	0	1122,928	0	1110,151	0	1097,449	0	1084,824	0	1081,0 -	
		BUILDIN	GS TOTALS	BULDING_	TYPES	COUNTRIES	5 RENG	VATION_RA	TE IN	UT_SETTIN	GS REI	NOVATION	COST	Ð					4		э.	
																	III	(M) (D)	-	1	+ 102%	

af ambience

at ambience

EU wide impact study - cost optimization and emission reduction using the ABEPeM platform

28 April 2022, Ambience Workshop

Sarnavi Mahesh Senior Researcher – Algorithms, Modelling & Optimization (AMO) VITO / EnergyVille

What is ABEPeM?

at ambience

Active Building Energy Performance Modelling

ABEPeM

1

2

3

Calculate and guarantee **operational cost savings** and performance **KPIs**

Calculate the **financial viability** of the renovation

Update **performance guarantees** during operational phase

39

ABEPeM – sub tools

at ambience

Configuration sub-tool		
	Energy Cost Cash Flow Estimation sub-tool	Financial / Economic calculation sub-tool
Grey box model creation sylt-tool		
Scenario creation		

ABEPeM – create baseline and reference configuration

at ambience

40

ABEPeM – calculate baseline operational cost

a; ambience

ABEPeM – calculate reference operational cost

ABEPeM - update performance guarantees

af ambience

What is Energy cost cash flow estimation tool?

a{ ambience

47

a ambience

1. Simple example, optimal control

1. Simple example, simple control

at ambience

2. Preliminary Impact study

at ambience

Simulation Conditions, Consumption and costs:

- Comfort constraints (Thermostat settings):
 - 7:00-23:00h: T >= 21 deg C
 - 23:00h-7:00h: T>= 18 deg C
- Electricity consumption :
 - Uncontrolled load: 8183.54 kWh/year
 - Heat pump : 3259.88 kWh/ year
- Electricity prices:
 - 0.25€/kWh in peak time
 - 0.19€/kWh in OFF peak time
 - 0.05€/kWh injection (from PV to grid)
- GHG emission: 51,1 g/kWh
- Electricity Meter:
 - Offtake Volume: 11443.42 kWh
 - Offtake cost: 2443.49 €
- Total Cost: 2443.49 €
- Total emissions: 0.58 t of CO2

2. Preliminary Impact study PV panels + Smart Heating

at ambience

Simulation conditions, consumption, and costs:

- Smart control on heating system:
 - 7:00-23:00h: 23 >= T >= 21 deg C
 - 23:00h-7:00h: 23 >= T>= 18 deg C
 - heating using solar energy to reduce injection or at low offtake price
- Electricity generation (PV): 6054.20 kWh/year
- Heat pump, and uncontrollable load electricity consumption are identical.
- Electricity Meter:
 - Offtake Volume: 8413.63 kWh
 - Injection Volume: 2949.65 kWh
 - Self-consumption Volume: 3104.55 kWh
 - Offtake cost: 1756.38 €
 - Injection cost: 147.48 €
- Total Cost: 1608.90 €
- Cost savings of 34 %
- Total emissions: 0.43 t of CO2
- Emission reduction of 26 %

af ambience

EU wide impact study: in figures

Simulation Conditions

- · Automated optimization for 2245 buildings.
- Smart control on heating system:
 - 7:00-23:00h: 23 >= T >= 21 deg C
 - 23:00h-7:00h: 23 >= T>= 18 deg C
- Heat pump: COP ~ 3
- PV panels sizing: 65% of roof area
- PV panels efficiency: 26 %

Results

- 60 % cases solved
- Costs reduction ranging from 10% 44%
- Emission reduction ranging from 5 % 35%

a*\interce*

Discussion questions – Renovation

at ambience

- Renovation needed for combining electrification and demand response/flexibility was calculated by using the K value. Do you consider this a correct approach?
- Are the groups of countries and target renovation methods accurate?

18/05/2022 54

Discussion questions – Carbon intensity of the af ambience energy mix

- What will be the prevalence of different energy sources for the following 30 years?
- Are the assumptions made for carbon intensity correct? Why not? What should be the carbon intensity for a certain country in a certain year?

18/05/2022

55

at ambience

9. ANNEX II

FIGURE 21: HISTORICAL BASELINE, CURRENT STATUS AND 2030'S TARGET FOR CI AT THE EU-27 LEVEL (AVERAGE) AND FOR EACH MS. HISTORICAL CI AND CURRENT CI FROM [3].

