

a{ ambience

The "ABEPeM" platform

"Making the value of demand response tangible for ESCO's"

Presented at FLEXCON online webinar, 28 Ocotober 2020.

Jef Verbeeck

Energy Technology Researcher – algorithms, modelling & optimization VITO / EnergyVille

Contents

what is **ABEPeM**?

building blocks of ABEPeM

energy cost cash flow estimation sub-tool

some examples

final remarks

multiple DR control strategies

multiple DR cash flows

What is ABEPeM?

a ambience

Ambience Building Energy Performance Modelling platform

ABEPeM

- Calculate and guarantee operational cost savings and performance KPIs
- Calculate the **financial viability** of the renovation
- Update **performance guarantees** during operational phase

multiple stakeholders

Multiple stakeholders

multiple renovations

multiple DR control strategies

muttiple DR cash flows

- tenant
- building owner tennant
- building owner landlord
- real estate corporation
- financial institutions
- 3rd party investors

multiple stakeholders

multiple renovations

multiple DR control strategies

multiple
DR cash flows

Multiple renovations

In principle very generic approach (not limited to buildings), but focus on:

- insulation
- electrification of heating system
- electrification of domestic hot tap water
- local (renewable) energy production
- energy storage
- electric vehicle charging

Multiple DR control strategies at ambience

multiple renovations

multiple DR control strategies

multiple DR cash flows

- Standard control strategies (PI, ON/OFF)
- Smart control with multiple objectives
 - minimize energy consumption
 - maximize self consumption
 - minimize cost
 - minimize emissions

multiple DR control strategies

multiple
DR cash flows

Multiple DR cash flows

In principle support for **direct** and **indirect** demand response schemes, but focused in indirect demand response:

- fixed or TOU electricity prices
- dynamic electricity prices
- different price for grid and renewable energy
- net metering
- injection tariff
- peak prices
- capacity tariff

Poll

What type of demand response is most suitable for buildings in your opinion?

- Direct demand response
- Indirect demand response
- Both
- No opinion

28/10/20

Contents

what is **ABEPeM**?

building blocks of ABEPeM

energy cost cash flow estimation sub-tool

some examples

final remarks

Step 1: collect building historical data

Configuration sub-tool

Flex model creation sub-tool

Scenario creation

sub-tool

Energy Cost Cash Flow Estimation sub-tool

Financial / Economic calculation sub-tool

Historical data

- weather
- energy consumption
- price info

•

28/10/20

Step 2: create baseline and reference configuration

Configuration sub-tool

- reference config

Flex model creation sub-tool

Scenario creation sub-tool

Energy Cost Cash Flow Estimation sub-tool

calculation sub-tool

28/10/20

weather

price info

energy consumption

12

Step 3: create baseline and reference building models

28/10/20

Step 4: calculate investment cost

28/10/20

weather

price info

energy consumption

Step 5: calculate baseline operational cost

28/10/20

Step 6: calculate reference operational cost

Step 7: generate investment report

Configuration sub-tool

- baseline config
- reference config

Flex model creation sub-tool

- baseline building model
- reference building model

Scenario creation sub-tool

- cold winter scenario
- warm winter scenario
- ...

Energy Cost Cash Flow Estimation sub-tool

- Baseline operational cost
- Reference operational cost

Financial / Economic calculation sub-tool

Investment cost
Baseline operational cost

- Reference operational cost

Investment report

- NP/
- financing
- ...

Baseline KPI report

- Energy consumption
- CO² emissions
- * ...

Reference KPI report

- Energy consumption
- CO² emissions
- ...

Historical data

- weather
- energy consumption
- price info
-

ABEPeM during the performance phase

Configuration sub-tool

- baseline config
- reference config

Flex model creation sub-tool

- baseline building model
- reference building model

Scenario creation sub-tool

- cold winter scenario
- warm winter scenario
- ...

Contents

what is **ABEPeM**?

building blocks of **ABEPeM**

energy cost cash flow estimation sub-tool

some examples

final remarks

Multiple commodity collector concept

hot water collector electricity collector

Commodity consuming devices

Commodity producing devices

Commodity converting devices

Commodity storage devices

Commodity exchange with the outside

Operational cost coupling to commodity flows

Building + infrastructure simulation model

Model reuse in the Ambience approach

- Contracting phase:
 Energy Cost Cash Flow Estimation sub-tool
- Operational phase:

 Model used for the "model predictive control"
- Measurement & monitoring phase:
 Guarantee Assessment sub-tool (IPMVP)

Calculation in simple SIMULATION mode

→ Suitable for **baseline calculations** without smart control

Calculation in OPTIMIZATION mode

→ Suitable for calculation of the **upper bound** of the value with smart control

Calculation in MPC mode

→ Getting the value of flexibility as realistic as possible with smart contrởl

Flex model creation for building models

The preferred scenario

Flex model creation for building models

The alternative scenario

Contents

what is **ABEPeM**?

building blocks of **ABEPeM**

energy cost cash flow estimation sub-tool

some examples

final remarks

Simple example, simple control

Simple example, optimal control

a ambience

Case 1: before renovation (baseline)

- Electricity cost: 0,266 €/kWh
- Gas cost: 0,0535 €/kWh

- Heating and hot water with gas boiler
- Gas: 1.662 €/year
- Electricity: 960 €/year
- Total: **2.622** €/year
- CO₂ emission: 6.825kg/year

a ambience

Case 2: envelope renovation

- Electricity cost: 0,266 €/kWh
- Gas cost: 0,0535 €/kWh

- Heating and hot water with gas boiler
- Gas: 635 €/year
- Electricity: 960 €/year
- Total: **1.595** €/year
- CO₂ emission: 2.987kg/year

a ambience

Case 3: Electrification + PV (6kWp)

- Offtake: 0,266 €/kWh
- Injection: 0,089 €/kWh

- Heating and hot water with gas boiler
- Electricity: 1.150 €/year
- Total: **1.150** €/year
- CO₂ emission: 968 kg/year
- → Cost saving of 28%

a ambience

Case 4: Active (smart) control on heating and buffer

- Offtake: 0,266 €/kWh
- Injection: 0,089 €/kWh

- Heating and hot water with gas boiler
- Electricity: 933 €/year
- Total: **933** €/year
- CO₂ emission: 657 kg/year
- → Cost saving of 19%

Buffer dimensioning family house

- Offtake: 0,25 €/kWh
- Injection: 0,05 €/kWh

Buffer dimensioning family house

Case 1: without smart control

		Domestic hot water buffer size									
		no buffer		1001		2001		4001			
Space heating buffer size	no buffer	consumption	7.439,53	consumption	7539,07	consumption	7591,07	consumption	7676,07		
		injection	4038,77	injection	4123,69	injection	4145,44	injection	4106,12		
		offtake	5305,11	offtake	5489,56	offtake	5563,31	offtake	5608,99		
		cost	€ 1.124,34	cost	€ 1.166,20	cost	€ 1.183,55	cost	€ 1.196,94		
	1001	consumption	7463,03	consumption	7562,57	consumption	7614,57	consumption	7691,57		
		injection	4020,81	injection	4106,45	injection	4126,63	injection	4075,33		
		offtake	5310,65	offtake	5495,82	offtake	5568	offtake	5593,71		
		cost	€ 1.126,62	cost	€ 1.168,63	cost	€ 1.185,66	cost	€ 1.194,66		
	2001	consumption	7472,53	consumption	7572,07	consumption	7624,07	consumption	7709,07		
		injection	4016,86	injection	4101,74	injection	4122,92	injection	4082,63		
		offtake	5316,2	offtake	5500,61	offtake	5573,79	offtake	5618,5		
		cost	€ 1.128,20	cost	€ 1.170,06	cost	€ 1.187,30	cost	€ 1.200,49		
	400l	consumption	7491,53	consumption	7591,07	consumption	7643,07	consumption	7728,07		
		injection	4011,62	injection	4095,88	injection	4119,03	injection	4081,78		
		offtake	5329,95	offtake	5513,75	offtake	5588,9	offtake	5636,65		
		cost	€ 1.131,90	cost	€ 1.173,64	cost	€ 1.191,27	cost	€ 1.205,07		

Buffer dimensioning family house

Case 2: with smart control

Domestic hot water buffer size									
	no buffer		1001		2001		4001		
		consumption	7368,48	consumption	7407,48	consumption	7427,52	consumption	7455,78
	no buffer	injection	3474,91	injection	3177,6	injection	3138,24	injection	3107,73
		offtake	4670,2	offtake	4411,88	offtake	4392,57	offtake	4390,32
		cost	€ 993,80	cost	€ 944,09	cost	€ 941,23	cost	€ 942,19
e e	100l	consumption	7381,06	consumption	7419,21	consumption	7438,31	consumption	7464,05
r siz		injection	3409,11	injection	3128,53	injection	3092,49	injection	3066,11
uffe		offtake	4616,97	offtake	1093,63	offtake	4357,6	offtake	4356,96
Space heating buffer size		cost	€ 983,78	cost	€ 937,21	cost	€ 934,77	cost	€ 935,93
atin	2001	consumption	7385,47	consumption	7422,3	consumption	7439,3	consumption	7466,66
e he		injection	3370,86	injection	3102,49	injection	3072,47	injection	3047,29
pace		offtake	4583,14	offtake	4351,6	offtake	4338,58	offtake	4340,75
<u> </u>		cost	€ 977,24	cost	€ 932,77	cost	€ 931,02	cost	€ 932,82
	400l	consumption	7376,29	consumption	7412,58	consumption	7429,55	consumption	7456,91
		injection	3350,87	injection	3094,84	injection	3069,22	injection	3045,99
		offtake	4553,96	offtake	4334,23	offtake	4325,57	offtake	4329,7
		cost	€ 970,94	cost	€ 928,81	cost	€ 927,93	cost	€ 930,12

Contents

what is **ABEPeM**?

building blocks of ABEPeM

energy cost cash flow estimation sub-tool

some examples

final remarks

Status of the ABEPeM platform

Configuration sub-tool
Flex model creation sub-tool
Energy Cost Cash Flow estimation sub-tool
Financial / Economic calculation sub-tool
Scenario creation sub-tool
Guarantee assessment sub-tool
overall integration of sub-tools

→ Keep in mind ... we are developing a concept.

28/10/20

Test ABEPeM in pilot projects

Portuguese pilot:

Belgian pilot:

Questions?

Follow us:

- n /company/ambience-project
- /ambienceh2020
- /channel/UC-MbfbNviyNihM8eLFIwzQg

www.ambience-project.eu

• ENEN

Become an Ambience stakeholder on:

http://ambience-project.eu/

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No #847054. DISCLAIMER: The sole responsibility for the content of this publication lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither EASME nor the European Commission is responsible for any use that may be made of the information contained therein.