Accelerating the transition to a low-carbon future through innovative business models and price based service contracts

The Clean Energy for all Europeans package aims to facilitate the transition away from fossil fuels and to deliver on the EU's Paris agreement commitments for reducing greenhouse gas emissions. Targets for 2030 include improving energy efficiency by 32.5% and the share for renewable energy by 32%. Today we will talk about how two Horizon 2020 funded projects are testing innovative business models that will combine building level flexibility with Energy Performance Contracting to accelerate the transition to a low carbon future. AmBIENCe aims at accelerating the decarbonisation of buildings and districts by stimulating emission-free consumption next to reduced consumption. For this, the flexibility – of electrified heating or cooling – of active buildings is leveraged through well-designed Demand Response programs to actively steer consumption to coincide as much as possible with – local – emission free generation.

NOVICE delivers a new business model for ESCOs that takes advantage of revenues from both energy efficiency and demand response flexibility. Enhanced Energy Performance Contract and MoU will guarantee building owners a minimum level of energy savings and occupant comfort whilst ensuring that the maximum value can be extracted from the flexibility potential of on-site energy assets.

Today's speakers are

Maarten De Groote has over 15 years' experience in energy efficient, sustainable and smart buildings, and joined VITO/EnergyVille as Senior Expert early 2019 where he coordinates the Positive Energy District programme and manages project teams for public clients (EU, national and local).

Today's speakers are

Jo Southernwood is a skilled energy researcher and project manager who joined the IERC in February 2017. With over 10 years' experience of working in the energy efficiency and low carbon technology sectors, Jo has a deep understanding of the challenges associated with building services and energy management.

Agenda

15:05 – 15:30 – AmBIENCe project

Energy Performance Contracting models Active building Energy Performance Contracting Business value of demand response in active building Energy Performance Contracting

Agenda

15:30 – 15:45 – NOVICE project

Overview: what is an Enhanced Energy Performance Contract and what are the benefits? Case studies and lessons learned: Impact of demand response on thermal comfort of occupants Agenda

15:45 – 16:00 – Q&A

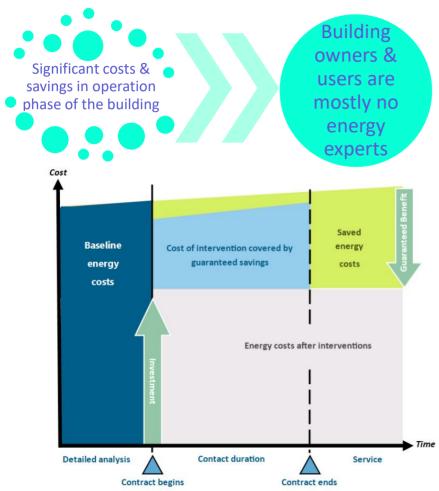
d¿ ambience

a ambience

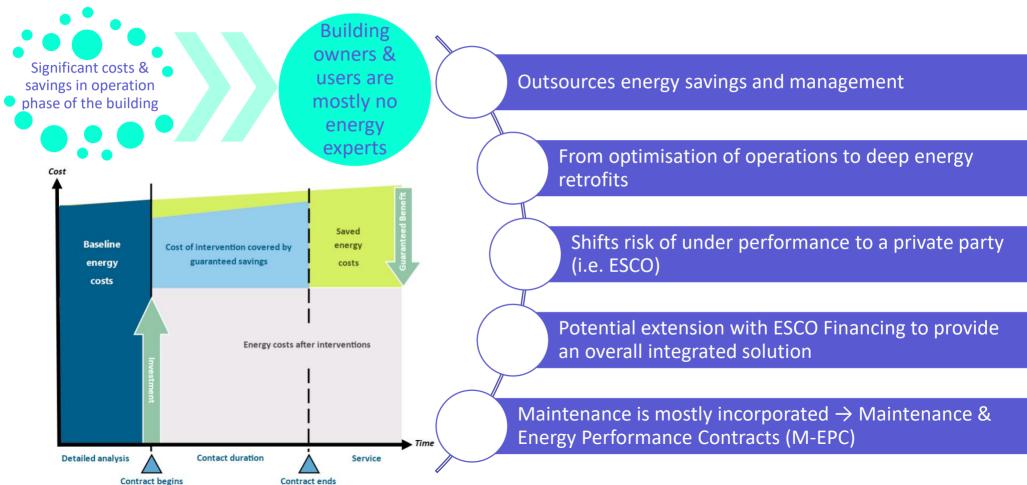
AmBIENCe Project - Accelerating the transition to a low-carbon future

21 April 2020 - webinar

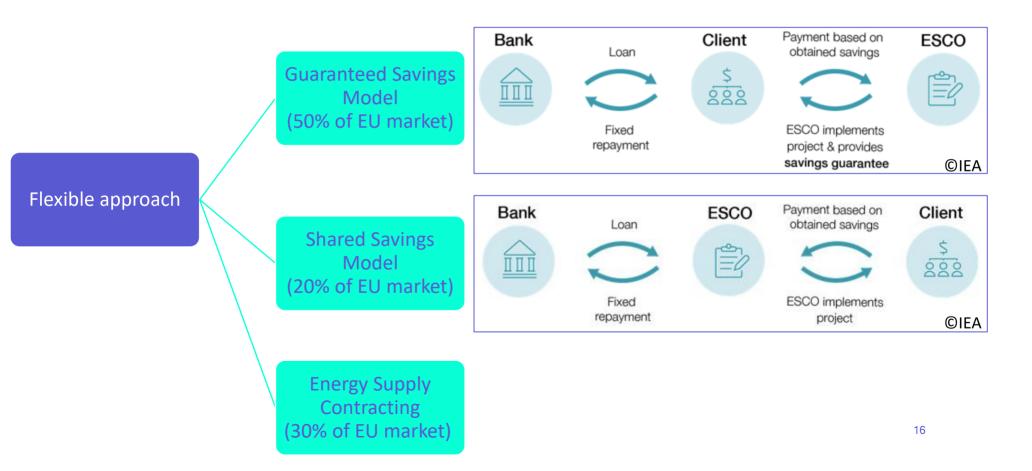
Maarten De Groote Senior Expert Built Environment & Smart Cities Vito / EnergyVille


Introducing Energy Performance Contracting

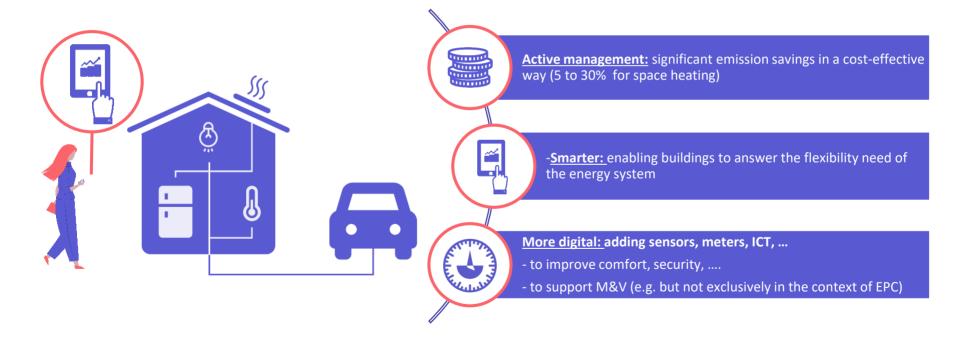
a ambience


Introducing Energy Performance Contracting

at ambience

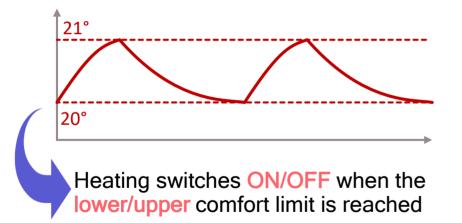

14

Introducing Energy Performance Contracting at ambience


The EPC model is flexible & adoptable

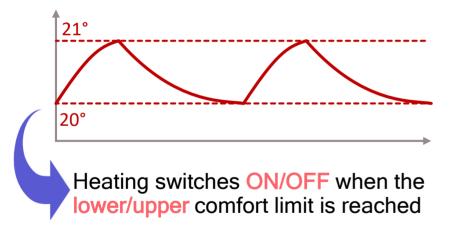
a; ambience

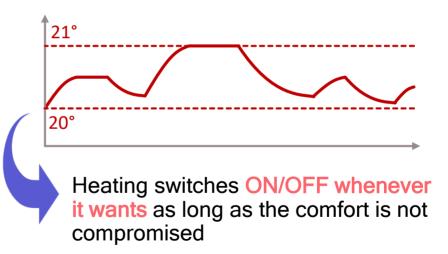
New Opportunity: Buildings become more digital and smarter


a; ambience

What is energy flexibility? An example ...

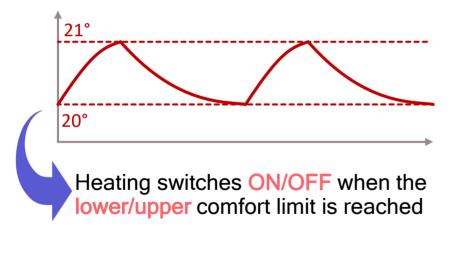
a ambience

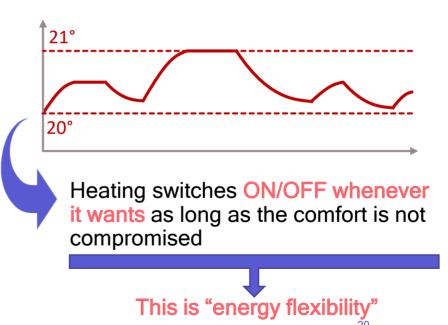

Heating of building with traditional ON/OFF control


What is energy flexibility? An example ...

a; ambience

Heating of building with traditional ON/OFF control


Heating of building with smart control


What is energy flexibility? An example ...

a; ambience

Heating of building with traditional ON/OFF control

Heating of building with smart control

	Gas (heating & DHW)	Electricity	Total
Original situation	kWh _{th} : 31.059	kWh: 3.605	kWh: 34.664
No wall insulationNo roof insulation	€: 1.662	€: 960	€: 2.622
Single glazing	CO2: 6.212 kg	CO2: 613 kg	CO2: 6.825 kg

	Gas (heating & DHW)	Electricity	Total	
Original situationNo wall insulation	kWh _{th} : 31.059	kWh: 3.605	kWh: 34.664	
No roof insulation	€: 1.662	€: 960	€: 2.622	
Single glazing	CO2: 6.212 kg	CO2: 613 kg	CO2: 6.825 kg	
Envelope renovationPUR cavity	kWh _{th} : 11.870	kWh: 3.605	kWh:15.475	60% e
12cm mineral wool	€: 635	€: 960	€: 1.595	
Double glazing	CO2: 2.374 kg	CO2: 613 kg	CO2: 2.987 kg	

a; ambience

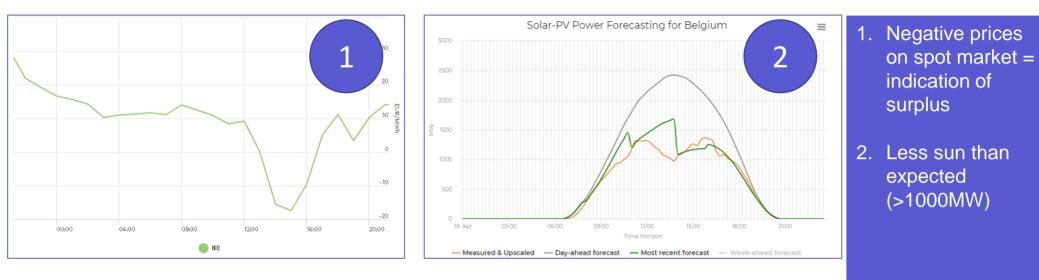
	Gas (heating & DHW)	Electricity	Total	
Original situation No wall insulation 	kWh _{th} : 31.059 €: 1.662	kWh: 3.605 €: 960	kWh: 34.664 €: 2.622	
No roof insulationSingle glazing	CO2: 6.212 kg	CO2: 613 kg	e. 2.022 CO2: 6.825 kg	
Envelope renovation	kWh _{th} : 11.870	kWh: 3.605	kWh:15.475	60% energy savings
PUR cavity12cm mineral woolDouble glazing	€: 635	€: 960	€: 1.595	
	CO2: 2.374 kg	CO2: 613 kg	CO2: 2.987 kg	
PV (6.5kWp) and Heat Pump	kWh: -	kWh: 7.583	kWh: 7.583	Injection saves CO2
	€: -	€: 1.150 feed-in tariff (€ 431 with net metering)	€: 1.150 (€ 431 with net metering)	elsewhere
	CO2: -	CO2: 968 kg (-692 kg)	CO2: 968 kg (-692 kg)	

a ambience

	Gas (heating & DHW)	Electricity	Total	
Original situation No wall insulation 	kWh _{th} : 31.059	kWh: 3.605	kWh: 34.664	
No roof insulation	€: 1.662	€: 960	€: 2.622	
 Single glazing 	CO2: 6.212 kg	CO2: 613 kg	CO2: 6.825 kg	
Envelope renovation	kWh _{th} : 11.870	kWh: 3.605	kWh:15.475	
PUR cavity 12cm mineral wool	€: 635	€: 960	€: 1.595	
• Double glazing	CO2: 2.374 kg	CO2: 613 kg	CO2: 2.987 kg	
PV (6.5kWp) and Heat Pump	kWh: -	kWh: 7.583	kWh: 7.583	
	€: -	€: 1.150 feed-in tariff (€ 431 with net metering)	€: 1.150 (€ 431 with net metering)	
	CO2: -	CO2: 968 kg (-692 kg)	CO2: 968 kg (-692 kg)	
ctive control of heating & DHW excl. battery storage)	kWh: -	kWh: 7.432	kWh: 7.432	
	€: -	€: 933 (€ 391 with net metering)	€: 933 (€ 391 with net metering)	
	CO2: -	CO2: 657 kg (-522 kg)	CO2: 657 kg (-522 kg)	

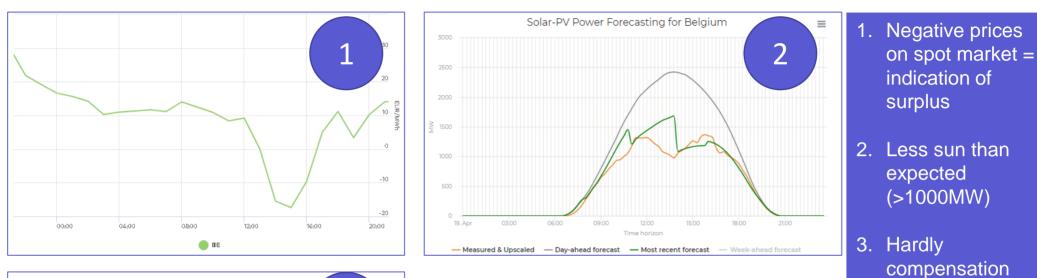
	Gas (heating &	DHW		
Original situationNo wall insulationNo roof insulationSingle glazing	kWh _{th} : 31.059 €: 1.662 CO2: 6.212 kg		penefits for I buildings, but	t
Envelope renovationPUR cavity12cm mineral woolDouble glazing	kWh _{th} : 11.870 €: 635 CO2: 2.374 kg	aggregation	is appropriate	e
PV (6.5kWp) and Heat Pump	kWh: - €: - CO2: -	€: 5 kg (-692 kg)	g) rg (-692 kg)	saves
Active control of heating & DHW (excl. battery storage)	kWh: - €: -	Wh: 7.432 ¹ €: 933 (€ 391 with net metering)	kWh: 7.432 €: 933 (€ 391 with net metering)	25% less injection to & offtake from the grid Relative low
	CO2: -	CO2: 657 kg (-522 kg)	CO2: 657 kg (-522 kg)	carbon intensity

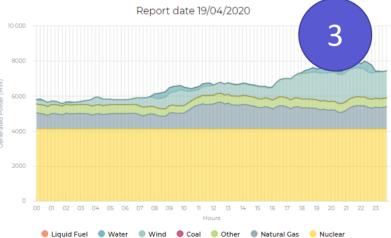
nce



a; ambience

 Negative prices on spot market = indication of surplus


@KVoorspools


a; ambience

a; ambience

classic plants

@KVoorspools

a; ambience

Combining EPC & Demand Response

Demand

Response

a; ambience

EPC & DR are two worlds with different Technologies, Services, Business Models, End Customer Profiles & Actors

Energy Performance Contracting

Twofold opportunity

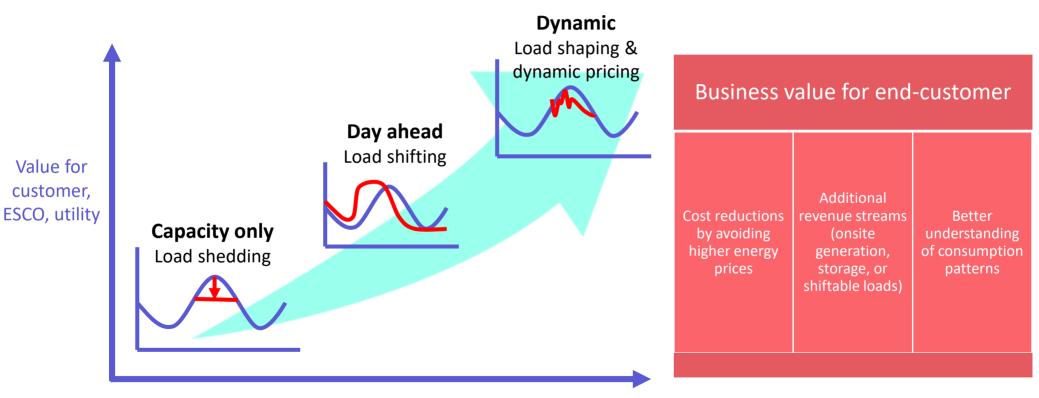

- Can an EPC model support the uptake of Demand Response?
- Can Demand Response improve the business case of EPCs?

On the intersection we improve the EPC model into a single consistent new concept

New Concept

a; ambience

The AmBIENCe concept extends the traditional EPC concept in 3 dimensions:


Extending energy performance guarantees related to energy efficiency to include the valorisation of flexibility through Demand Response (DR) services

Tailor EPCs to a broad scope of building types: residential, hospitals, education, offices, commerce, etc

Extending the scope of EPCs to groups/clusters of buildings under the concept of (local) energy communities.

21/04/2020

The business value of DR in active building EPC

a ambience

Active managed Buildings with Energy Performance Contracting

GOALS: WHAT will we do?

Extend the Energy Performance Contracting concept to include Demand Response value streams, valorizing the flexibility that is available in Active Buildings*.

Make this Active Building EPC concept applicable to a broader range of buildings (incl. residential) and clusters of buildings.

Develop a tool that supports the forecast of the DR value stream in the EPC contracting phase, along with a matching M&V methodology for the operational phase.

Validate the concept, tool and M&V methodology through two pilots (real buildings, real ESCOs).

Engage with all relevant actors and stakeholder groups (from building managers to ESCOs, policy makers and financial institutions) to remove barriers and ensure applicability.

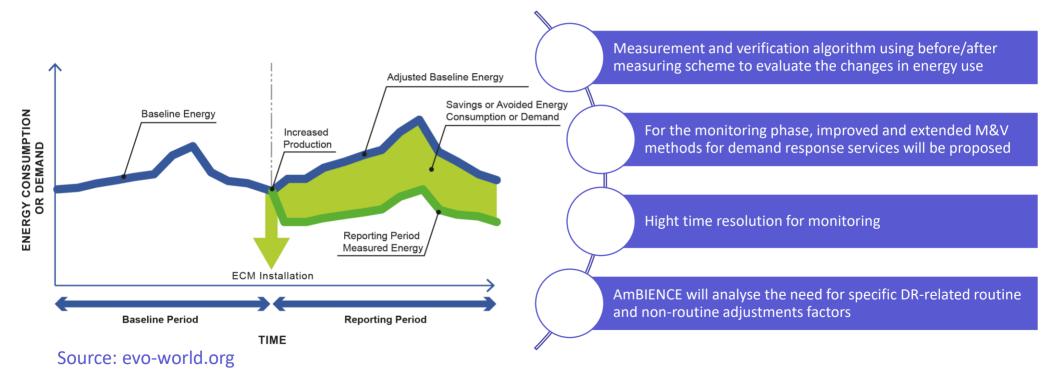
*Active Buildings: equipped with sensors, meters, ICT that enables them to optimally control the consumption

Analysing the active building EPC concept & business models in IT, BE, ES, PT

	Italy	Belgium	Spain	Portugal
Current status of EPC/ESCOs				
Current status of DR services				
Current status of other enabling factors				

Analysing the active building EPC concept & business models in IT, BE, ES, PT

	Italy	Belgium	Spain	Portugal
Current status of EPC/ESCOs	$\mathbf{\Psi}$			X
Current status of DR services		$\mathbf{\Psi}$	X	X
Current status of other enabling factors			X	X


Analysing the active building EPC concept & business models in IT, BE, ES, PT

a ambience

	(Å)		2	2
	Italy	Belgium	Spain 🗧	Portugal
Current status of EPC/ESCOs	$\mathbf{\Psi}$		*	X
Current status of DR services		$\mathbf{\Psi}$	X	X
Current status of other enabling factors			X	X

Tailored M&V towards flexibility

a; ambience

Is active building management the silver bullet?

at ambience

Is active building management the silver bullet?

a*ξ* ambience

Is active building management the silver bullet?

a*ξ* ambience

Is active building management the silver bullet? at ambience

Is active building management the silver bullet? at ambience

Is active building management the silver bullet? at ambience

Is active building management the silver bullet? An additional layer of opportunities

a; ambience

*** * * * *

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No #847054. DISCLAIMER: The sole responsibility for the content of this publication lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither EASME nor the European Commission is responsible for any use that may be made of the information contained therein.

JOIN US AT:

www.ambience-project.eu

a ambience

Follow us:

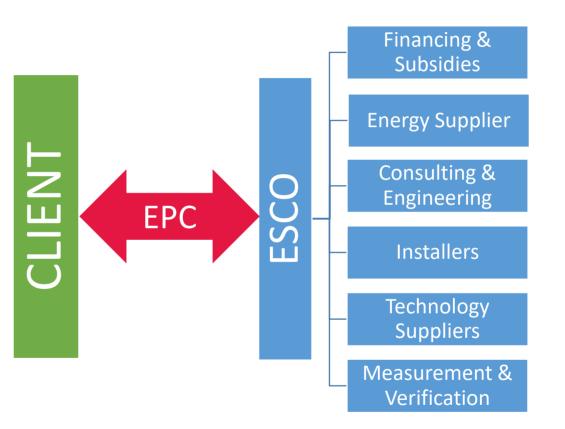
- in /company/ambience-project
- /ambienceh2020
- /channel/UC-MbfbNviyNihM8eLFIwzQg

NOVICE: The benefits of Enhanced EPCs

Jo Southernwood

Senior Research Engineer International Energy Research Centre

21st April 2020

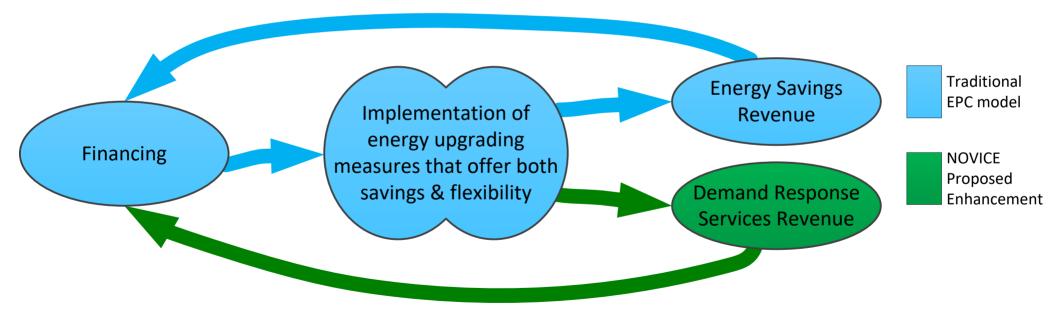


This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 745594

Traditional EPC model

Energy Performance Contracts (EPCs) have many advantages:

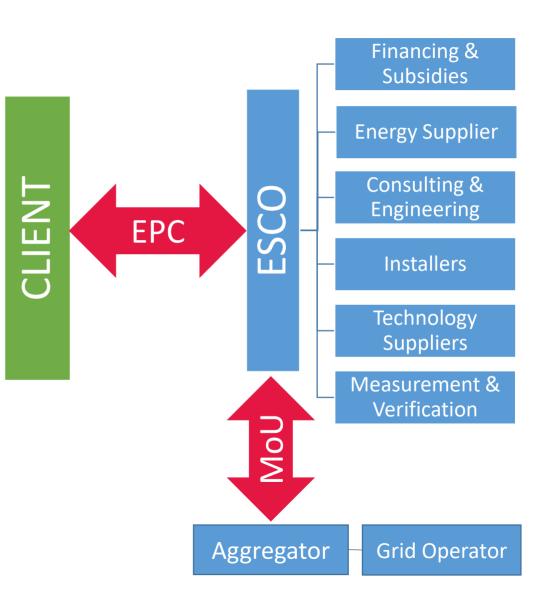
- Client does not require upfront capital.
- Finance for the project is provided by the ESCO or a third party finance provider.
- Energy Savings are guaranteed by the ESCO, removing the operational risk from client.
- The loan is repaid from the savings on energy bills.
- Single contract between client and ESCO covers all energy efficiency measures.
- Deeper renovations can be achieved through taking a whole building approach.



Barriers to EPC

Uptake of EPCs has been slow in many countries because:

- EPCs are complex contracts.
- High cost of procurement & contract development.
- Contract durations of 5-15 years are typical.
- ESCOs find it difficult to obtain finance loans tend to be secured based on client credit rating, not energy saving potential of project.
- Lack of government support and lack of information about EPCs.


NOVICE in a Nutshell: An Enhanced EPC

NOVICE Enhanced EPCs

How do they work?

- NOVICE project is looking at an Enhanced EPC business model for ESCOs.
- It considers demand response as well as energy efficiency measures
- This creates a dual revenue stream one from energy efficiency, another from demand response.
- The ESCO remains the single point of contact for all measures but uses the services of a demand response aggregator to provide services to the grid.
- A Memorandum of Understanding (MoU) governs the relationship between ESCO and Aggregator

NOVICE Enhanced EPCs - How do they work?

ESCO

WHAT is guaranteed?

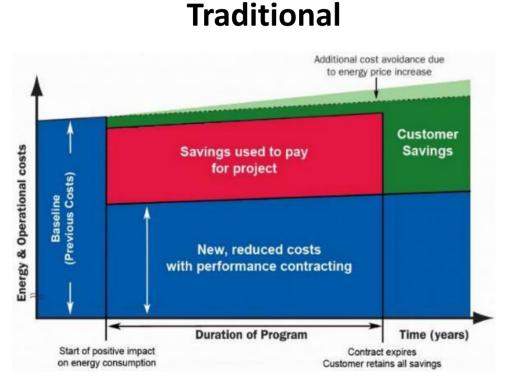
EPC

- Energy savings
- Cost savings

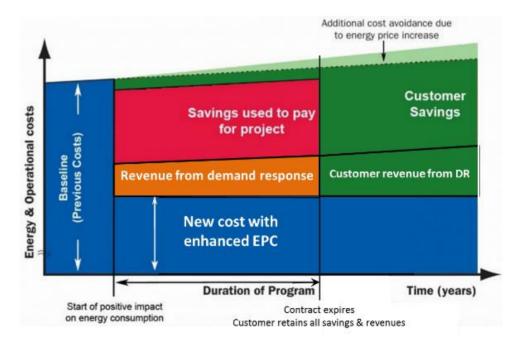
Client

- Thermal comfort parameters
- Operational availability
- Recovery time

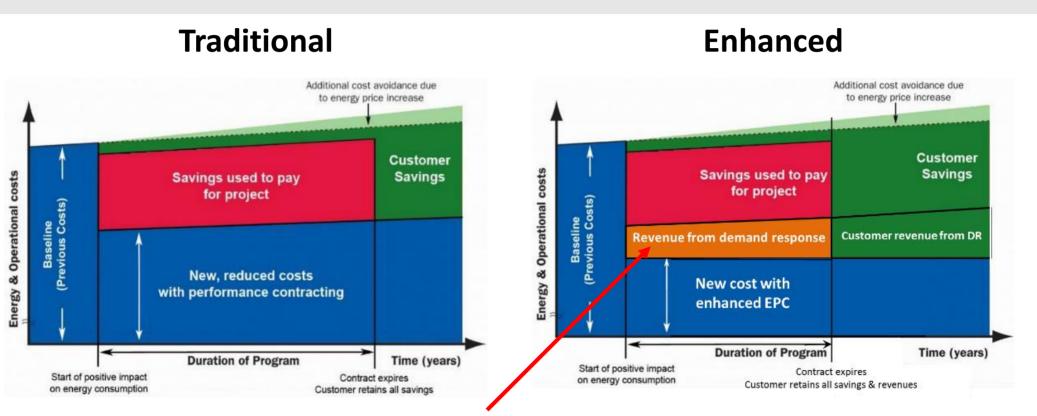
WHO is responsible?


Aggregator

• Client facing contact


MoU

- Setting the baseline
- Split of revenues
- Sharing information


Traditional EPC vs Enhanced EPC finance

Traditional EPC vs Enhanced EPC finance

What's the value of this orange bar? By how much can we reduce contract duration?

Case Studies

Office with Data Centre

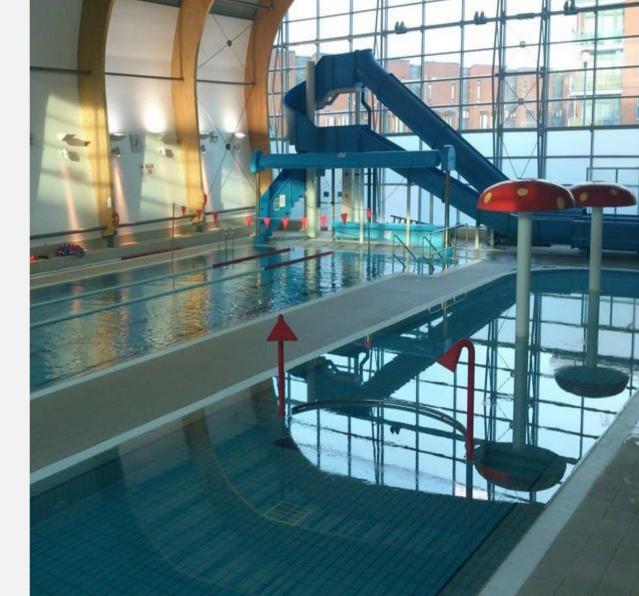
Opportunities register for office with data centre in Ireland

	Annual saving (€)	% of Saving	CAPEX	Simple Payback
Energy saving opportunities	€110,000	85%	€290,000	2.6 years

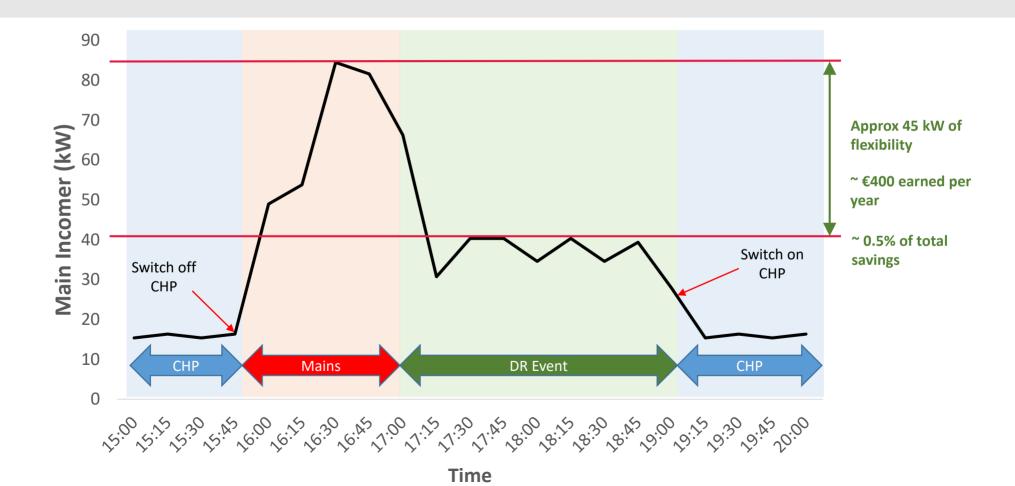
Office with Data Centre

Opportunities register for office with data centre in Ireland

	Annual saving (€)	% of Saving	CAPEX	Simple Payback
Energy saving opportunities	€110,000	85%	€290,000	2.6 years
Demand response	€20,000	15%	0	-
opportunities				
Total	€130,000		€290,000	2.2 years


15% reduction in payback period at no extra capital cost to the client

Leisure Centre



How Flexible?

- Aggregators in Ireland only want to deal with large industrial sites
- So NOVICE simulated a demand response event at a leisure centre in Dublin
- All non essential HVAC equipment was shut down for 2 hours between 5pm-7pm
- How much flexibility is available?
- Would building users notice a DR event?

How much flexibility is available from this building?

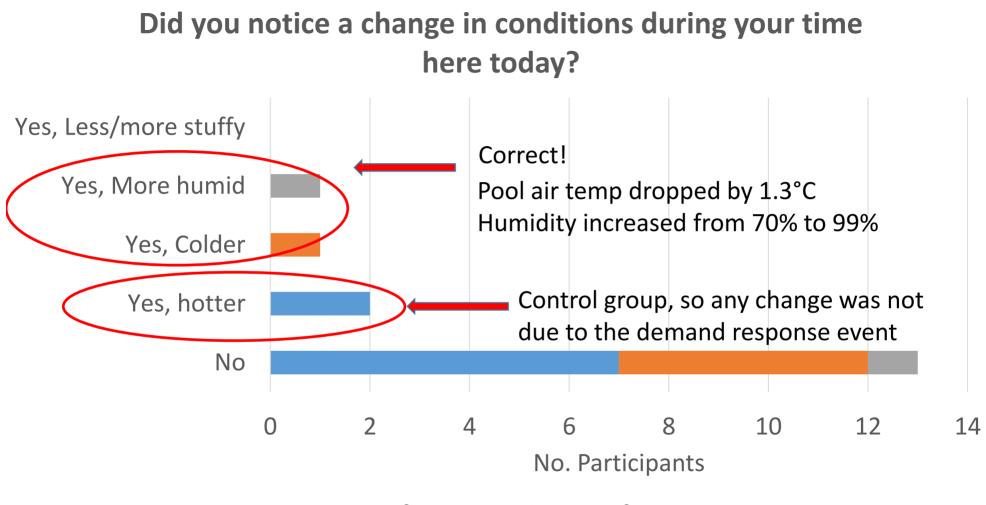
Learning from case studies

- Including DR opportunities in an EE opportunities register can improve the business case for energy upgrades as a whole.
- Sites with large loads, energy generation and energy storage are more suitable for NOVICE
- Sites able to participate in more than one DR programme are more suitable for NOVICE
- The maturity of the DR and electricity markets in each country can significantly impact suitability for NOVICE.

What about building users?


- Carried out a survey with building users
- Control group: Before DR event started Test Group: During & after event
- Participants were not told about the DR event to avoid any bias - 'anchoring' effect
- A range of questions were asked to gauge satisfaction with temperature, humidity and air quality.

1	What is your gender?
2	What was your main activity in the last 20 minutes?
	How satisfied are you with the temperature in the area we are in
3	now?
4	How would you rate the humidity levels in the area we are in now?
5	How would you rate the air quality in the area we are in now?
6	In which other area of the leisure center did you spend most time today?
7	Thinking about that area, and the time you spent there, how satisfied were you with the temperature in that area?
	How would you rate the humidity levels in that area at the time you
8	were there?
	How would you rate the air quality in that area at the time you were
9	there?
10	Did you notice any change in conditions during the time you were there?
11	If you would like to make any other comments about the temperature or air quality at the leisure center today, please do so below.
	Please indicate which items of clothing from the list below the
12	participant is wearing.
13	What is the date?
14	What is the time now?
15	What time did the DR event start?
	Record the approximate outdoor temperature and seasonal
16	conditions


We asked:

"Did you notice a change in conditions during your time in the leisure centre today?"

Did you notice a change in conditions during your time here today? Yes, Less/more stuffy Yes, More humid Yes, Colder Yes, hotter No 0 2 4 6 8 10 12 14 No. Participants ■ Before ■ During ■ After

Before During After

Before During After

Thank you! Jo Southernwood International Energy Research Centre jo.southernwood@ierc.ie

www.linkedin.com/company/25175684

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 745594